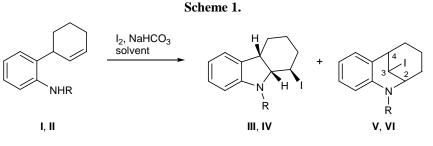
Reactions of N- and C-Alkenylanilines: V.* Synthesis of Iodo-Substituted Heterocycles from *o*-Cycloalkenylanilines and Their Transformations

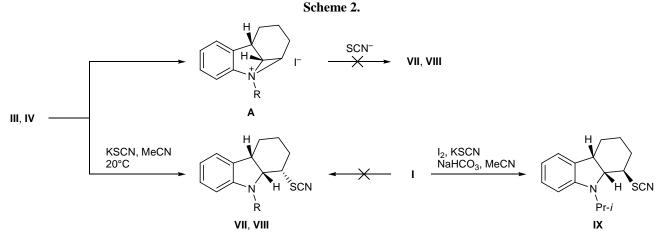
R. R. Gataullin¹, F. F. Minnigulov², L. V. Spirikhin¹, and I. B. Abdrakhmanov¹

¹ Institute of Organic Chemistry, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, 450054 Bashkortostan, Russia fax: (3472)356066; e-mail: chemorg@anrb.ri


² Bashkir State Agrarian University, Bashkortostan, Russia

Received June 18, 2002

Abstract—Iodination of *N*-isopropyl- and *N*-benzyl-2-(2-cyclohexenyl)anilines gave the corresponding 1-iodohexahydrocarbazoles which underwent quantitative isomerization into 3-iodo-2,4-propano-1,2,3,4-tetrahydroquinolines. Nucleophilic substitution in 1-iodohexahydrocarbazoles and 3-iodo-2,4-propano-1,2,3,3a,4,8bhexahydrocyclopenta[*b*]indole was studied. N-Allylation of the latter via reaction with allyl bromide is accompanied by replacement of the iodine atom by bromine.


Interest in compounds of the cyclohexa- and cyclopenta[b]indole series arises primarily from the fact that they constitute structural fragments of some alkaloids [2] and are used in the synthesis of biologically active substances [3]. The first synthesis of a compound of the above series was described in [4]. In continuation of our studies on cyclization of *o*-cycloalkenylanilines [5, 6], in the present work we examined the cyclization of *N*-isopropyl- and *N*-benzyl-2-(2-cyclohexenyl)anilines **I** and **II** by the action of iodine and nucleophilic substitution of the halogen atom in the resulting 1-iodohexahydrocarbazoles **III** and **IV**. Also, analogous transformations of previously synthesized 3-iodohexahydrocyclopenta[b]indole were studied [5].

We showed in [6] that cyclization of cyclohexenylanilines having no substituent on the nitrogen group by the action of iodine takes different pathways, depending on the solvent. Analogous reaction of N-substituted amines I and II with I_2 in CCl_4 in the presence of NaHCO₃ leads to hexahydrocarbazoles III and IV (Scheme 1). The selectivity decreases in going to other solvents, such as methylene chloride and acetonitrile. Here, the reactions are accompanied by endo-6-cyclization and intramolecular isomerization of carbazoles III and IV into tetrahydroquinoline derivatives V and VI. The latter were the only products obtained from compounds I and II in acetonitrile. Heterocycles III and IV in acetonitrile or chloroform were converted into tetrahydroquinolines V and VI, respectively, at different rates. By measuring intensities of proton signals in the ¹H NMR spectra in CDCl₃ we found that the isomerization of N-isopropylcar-

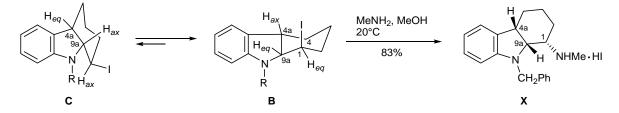
I, III, V, R = i-Pr; II, IV, VI, $R = PhCH_2$.

^{*} For communication IV, see [1].

VII, R = i-Pr; **VIII**, $R = PhCH_2$.

bazole **III** into **V** is faster than the isomerization of its *N*-benzyl analog **IV**.

No expansion of the indole ring into quinoline occurred when potassium thiocyanate (which is readily soluble in acetonitrile) was added to a solution of carbazole III and IV, and the corresponding 1-thiocyanato derivatives VII and VIII were obtained in almost quantitative yield (Scheme 2). Thiocyanates VII and VIII cannot be formed by transformation of aziridinium salt **A**, for in this case orientation of the substituent on C¹ would be the opposite. The reaction of amine I with I₂ in acetonitrile in the presence of KSCN and NaHCO₃ gave compound IX which is stereoisomeric to VII. Presumably, it was formed via direct reaction of I with (SCN)₂.


The NMR spectra of compounds **VII** and **IX** differ only slightly. The ¹³C NMR spectrum of a mixture of **VII** and **IX** contained a double set of signals. The C^{9a} -H and C^1 -S bonds in **VII** are arranged *cis*; in keeping with the known rule for 1,2- or 1,3-*syn* arrangement of substituents, the corresponding carbon signals shift upfield.

The coupling constant between the 1-H and 9a-H protons in the ¹H NMR spectrum of hydroiodide X (which was obtained by reaction of hexahydrocarba-

zole **IV** with methylamine in methanol; Scheme 3) indicates that the former is axial and that the latter is equatorial. A strong effect of the N-substituent on the conformation was observed for 1-iodohexahydrocarbazoles III and IV. The cyclohexane fragment in hexahydrocarbazoles III and IV in solution has a chair conformation (**B**) where the 1-H and 9a-H protons are equatorial. This follows from the small coupling constant $J_{1.9a} = 2-4$ Hz. The large coupling constant observed for 9a-H and 4a-H (J = 6.4-7.1 Hz) indicates cis-junction of the rings [7]. Substituent on the nitrogen atom is likely to favor displacement of conformational equilibrium of hexahydrocarbazoles III and IV toward the above form. Hexahydrocarbazoles having no N-alkyl substituent [9, 10] were found to exist as conformers C. We recorded the ¹H NMR spectra of compound IV at 20 and 50°C. Raising the temperature resulted in some increase of the fraction of conformer C, as followed from increase in the coupling constant $J_{1,9a}$ from 2.4 to 2.7 Hz and decrease in $J_{4a,4-ax}$ from 11.0 to 10.8 Hz.

A substituent can be introduced to the nitrogen atom both before and after heterocyclization of alkenylaniline. Moreover, taking into account different properties of the nitrogen- and halogen-containing

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 40 No. 7 2004

XII, XV, R = H; XIII, XVI, $R = CH_2 = CHCH_2$.

moieties, either alkenylation of the amino group or replacement of the halogen atom by alkenylamino group can be effected. For example, cyclopenta[b]indole XI reacted with ammonia in acetonitrile at 100°C to give diamine XII [5] (Scheme 4). The replacement of iodine by allylamino group occurs at room temperature with formation of 3-allylaminoindole XIII in high yield. The allylation of XI with allyl bromide in acetonitrile was accompanied by replacement of the iodine atom by bromine to afford 3-bromoindole XIV with a different configuration at C^3 . By reaction of **XIV** with ammonia or allylamine we obtained diamines XV and XVI, respectively, the configuration at C^3 remaining unchanged (Scheme 4). Diallyl derivative **XVI** reacted with I_2 to give heterocycle XVII which underwent fast rearrangement into seven-membered isomer XVIII.

The structure of 3-bromocylopenta[*b*]indole **XIV** was proved by elemental analysis and spectral data. The JMOD ¹³C NMR spectrum of **XIV** contained 7 signals in the aliphatic region; among these, the doublet at δ_C 58.4 ppm was assigned to the C³ atom [7]. Compound **XIV** showed in the mass spectrum the molecular ion peak with m/z 291, and strong peaks with m/z 212 $[M - Br]^+$ (base peak), 184 $[M - Br - C_2H_4]^+$, and 170 $[M - Br - C_6H_6]^+$ were present. Assuming that the replacement of iodine in **XI** follows the S_N2 mechanism, the 3-H and 3a-H protons in **XIV** should be arranged *cis*.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 spectrometer (300.13 MHz for ¹H and 75.47 MHz for ¹³C); chloroform-*d* was used as solvent, and tetramethylsilane, as internal reference. The IR spectra were measured on a UR-20 instrument. The purity of initial amines **I** and **II** was checked by GLC on a Chrom-5 chromatograph equipped with a flame-ionization detector and a 1200×3.5 -mm column (stationary phase SE-30 on Chromaton); oven temperature programming at 12 deg/min; carrier gas helium. The purity of the products was checked by TLC on Silufol UV-254 plates; the chromatograms were developed by treatment with iodine vapor.

N-Isopropyl-2-(2-cyclohexenyl)aniline (I). A highpressure reactor was charged with 1.7 g (10 mmol) of 2-(2-cyclohexenyl)aniline, 1.4 g (12 mmol) of isopropyl bromide, 10 ml of isopropyl alcohol, and 2 g of potassium carbonate, and the mixture was heated for 16 h at 100°C. The mixture was filtered, the filtrate was evaporated, the residue was dissolved in 20 ml of CHCl₃, the solution was washed in succession with water, a 20% aqueous solution of Na₂CO₃, and water again, dried over MgSO₄, and evaporated, and the residue was distilled under reduced pressure. Yield 95%, bp 126°C (3 mm). IR spectrum, v, cm⁻¹: 3400 (NH). ¹H NMR spectrum, δ , ppm: 1.4 d (3H, CH₃, *J* = 6.8 Hz), 1.5 d (3H, CH₃, *J* = 6.8 Hz), 1.8–2.4 m (6H, 3CH₂), 3.6 br.s (1H, NH), 3.9 m (2H, CH), 5.9 m (1H, 2'-H), 6.2 m (1H, 3'-H), 6.9–7.4 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 21.2 (C^{5'}), 22.9 and 23.2 (CH₃), 25.0 (C^{4'}), 28.0 (C^{6'}) 38.0 (C^{1'}), 44.0 (CH), 111.2 (C⁶), 116.3 (C⁴), 127.2 (C⁵), 128.9 (C^{2'}), 129.0 (C³), 130.3 (C^{3'}), 132.5 (C²), 144.7 (C¹). Found, %: C 83.31; H 9.45; N 6.19. C₁₅H₂₁N. Calculated, %: C 83.67; H 9.83; N 6.50.

N-Benzyl-2-(2-cyclohexenyl)aniline (II). Benzyl bromide, 1.7 g (10 mmol), was added dropwise under continuous stirring to a mixture of 5.3 g of NaHCO₃ and 6.9 g (40 mmol) of 2-(2-cyclohexenyl)aniline. The mixture was stirred for 24 h at room temperature, diluted with 20% aqueous sodium hydroxide, and extracted with benzene. The organic phase was separated, dried over MgSO₄, and evaporated. Excess initial amine was removed from the residue by vacuum distillation, and product II was isolated from the still residue by chromatography in a short column charged with silica gel. Yield 70%, bp 142°C (1 mm). IR spectrum, v, cm⁻¹: 3400 (NH). ¹H NMR spectrum, δ , ppm: 1.5-2.1 m (6H, 3CH₂), 3.4 br.s (1H, NH), 4.0 m (1H, 1'-H), 4.3 s (2H, CH₂), 5.7 m (1H, 3'-H), 5.8 m (1H, 2'-H), 6.7–7.5 m (9H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 21.1 (C^{5'}), 25.0 (C^{4'}), 28.1 (C^{6'}), 37.9 (C^{1'}), 48.3 (PhCH₂), 110.8 (C⁶), 117.1 (C⁴), 125.8 (C³), 127.4 $(C^{2'})$, 127.9 (C^{5}) , 128.1 $(C^{3''}, S^{5''})$, 128.6 $(C^{4''})$, 128.7 $(C^{2''}, C^{6''})$, 128.8 $(C^{3'})$, 135.7 $(C^{1''})$, 139.5 (C^{2}) , 145.3 (C¹). Found, %: C 86.24; H 7.75; N 5.02. $C_{19}H_{21}N$. Calculated, %: C 86.65; N 8.04; N 5.32.

N-Isopropyl- and *N*-benzyl-1-iodo-1,2,3,4,4a,9ahexahydrocarbazoles III and IV (general procedure). Sodium hydrogen carbonate, 10 mmol, and iodine, 2 mmol, were added to a solution of 1 mmol of amine I or II in 20 ml of carbon tetrachloride. When the initial amine disappeared, the solvent was removed by decanting, the precipitate was dissolved in 30 ml of methylene chloride, the solution was treated with 10% aqueous Na₂S₂O₃ (2×20 ml), and the organic phase was separated, washed with water (2×10 ml), dried over MgSO₄, and evaporated under reduced pressure.

Compound **III**. Yield 95%, R_f 0.6 (C₆H₆). IR spectrum, v, cm⁻¹: 550 (C–I). ¹H NMR spectrum, δ , ppm: 1.1–2.3 m (6H, 3CH₂), 1.3 d (3H, CH₃, J = 6.7 Hz), 1.5 d (3H, CH₃, J = 6.7 Hz), 3.2 d.t (1H, 4a-H, $J_{4a,4-ax} = 10.0, J_{4a,4-eq} = 3.8$ Hz), 3.9 d.d [1H, 9a-H, $J_{9a,1} = 4.4, J_{9a,4a-eq} = 7.1$ Hz), 4.1 t (1H, CH, J = 6.7 Hz), 4.9 d.d.d [1H, 1-H, $J_{1,2-ax} = 8.6, J_{1,2-eq} = 4.4$ Hz), 6.7–7.3 m (4H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 16.8 (C³), 22.6, 23.1 (2CH₃), 30.2 (C⁴), 30.5 (C²), 35.1 (C¹), 39.4 (C^{4a}), 47.5 (CH), 68.8 (C^{9a}), 110.6 (C⁸), 122.5 (C⁷), 124.1 (C⁵), 127.3 (C⁶), 134.5 (C^{4b}), 145.2 (C^{8a}). Found, %: C 52.51; H 5.63; I 36.78; N 3.86.

 $C_{15}H_{20}IN$. Calculated, %: C 52.80; H 5.91; I 37.19; N 4.10.

Compound IV. Yield 90%. Rf 0.5 (C6H6). IR spectrum, v, cm⁻¹: 550 (C–I). ¹H NMR spectrum, δ , ppm: at 20°C: 1.0–2.4 m (6H, 3CH₂), 3.3 d.t (1H, 4a-H, $J_{4a,4-ax} = 11.0, J_{4a,4-eq} = 6.2$ Hz), 3.8 d.d [1H, 9a-H, $J_{9a,1} = 2.4$, $J_{9a,4a-eq} = 6.4$ Hz), 4.2 d and 4.3 d (1H each, PhCH₂, J = 16.3 Hz), 4.8 d.d.d (1H, 1-H, $J_{1,2-ax} = 7.7$, $J_{1,2-eq} = 2.1$ Hz), 6.5 d (1H, 8-H, 7.9 Hz), 6.8 t (1H, 6-H), 7.0 t (1H, 7-H), 7.1 d (1H, 5-H, J = 7.3 Hz), 7.2– 7.4 m (5H, H_{arom}); at 50°C: 1.0–2.4 m (6H, 3CH₂), 3.4 d.t (1H, 4a-H, $J_{4a,4-ax} = 10.8$, $J_{4a,4-eq} = 6.9$ Hz), 3.9 d.d (1H, 9a-H, $J_{9a,1} = 2.7$, $J_{9a,4a-eq} = 6.9$ Hz), 4.2 d and 4.3 d (1H each, PhCH₂, J = 16.2 Hz), 4.8 d.d.d (1H, 1-H, $J_{1,2-ax} = 7.7$, $J_{1,2-eq} = 2.7$ Hz), 6.5 d (1H, 8-H, J = 7.9 Hz), 6.8 t (1H, 6-H), 7.0 t (1H, 7-H), 7.1 d (1H, 5-H, J = 7.3 Hz), 7.2–7.4 m (5H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 20.9 (C⁵); 29.9 (C⁴); 31.1 (C²); 31.9 (C¹); 38.3 (C^{4a}); 52.5 (CH₂); 72.2 (C^{9a}); 118.9 (C^{δ}) ; 127.2 (C^{7}) ; 127.3 (C^{5}) ; 128.4 (C^{6}) ; 134.1 (C^{4b}) ; 138.9 (C^{8a}); 126.9, 128.5, 128.6, 138.8 (C_{arom}). Found, %: C 58.28; H 4.87; I 32.29; N 3.19. C₁₉H₂₀IN. Calculated, %: C 58.62; N 5.18; I 32.60; N 3.60.

 $(1R^*, 4aR^*, 9aS^*)$ -N-Isopropyl-1-thiocyanato-1,2,3,4,4a,9a-hexahydrocarbazole (VII). Potassium thiocyanate, 1 g (10 mmol), was added to a solution of 0.34 g (1 mmol) of compound **III** in 10 ml of acetonitrile. When the reaction was complete, the mixture was evaporated, and 10 ml of water and 10 ml of chloroform were added to the residue. The organic phase was separated, dried over MgSO₄, and evaporated under reduced pressure. Yield 0.2 g (75%). $R_{\rm f}$ 0.7 (C₆H₆). IR spectrum, v, cm⁻¹: 2380 m (C=N). ¹H NMR spectrum, δ , ppm: 1.2 d and 1.4 d (3H each, $2CH_3$, J = 7.0 Hz), 1.2-2.2 m (6H, $3CH_2$), 3.1 d.d.d (1H, 4a-H, $J_1 = 4.0$, $J_2 = 8.1$, $J_3 = 11.5$ Hz), 3.6 t (1H, 9a-H, J = 8.0 Hz), 3.7 m (1H, 1-H), 3.8 q (1H, CH, J = 7.0 Hz), 6.7 d (1H, 8-H, J = 8.3 Hz), 7.2–7.5 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 20.6, 21.3 $(2CH_3)$; 20.9 (C³); 24.4 (C⁴); 30.5 (C²); 43.3 (C^{4a}); 51.5 (C¹); 52.6 (CH); 63.7 (C^{9a}); 111.7 (SCN); 113.9, 121.2, 122.3, 127.4, 134.1, 150.5 (Carom). Found, %: C 70.25; H 7.11; N 9.84; S 11.43. C₁₆H₂₀N₂S. Calculated, %: C 70.55; H 7.40; N 10.28; S 11.77.

N-Benzyl-1-thiocyanato-1,2,3,4,4a,9a-hexahydrocarbazole (VIII). Potassium thiocyanate, 0.6 g (6 mmol), was added to a solution of 0.2 g (0.6 mmol) of compound IV in 5 ml of acetonitrile. When the reaction was complete, the solution was evaporated, and 10 ml of water and 10 ml of chloroform were added to the residue. The organic phase was separated, dried over MgSO₄, and evaporated under reduced pressure. Yield 0.16 g (98%). R_f 0.4 (C₆H₆). IR spectrum, v, cm⁻¹: 2380 m (C=N). ¹H NMR spectrum, δ , ppm: 1.5–2.2 m (6H, 3CH₂), 3.4 m (1H, 4a-H), 3.6–3.7 m (2H, 1-H, 9a-H), 4.5 s (2H, CH₂), 6.5 d (1H, 8-H, J = 8.0 Hz), 6.8 t (1H, 6-H, J = 7.3 Hz), 7.0–7.4 m (7H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 19.0 (C³); 27.4 (C⁴); 28.3 (C²); 39.9 (C^{4a}); 48.3 (C¹); 52.9 (CH₂); 67.7 (C^{9a}); 109.1 (C⁸); 111.4 (SCN); 119.0 (C⁷); 122.7 (C⁵); 127.2 (C⁶); 132.8 (C^{4b}); 150.8 (C^{8a}); 127.0, 127.7, 128.6, 138.4 (C_{arom}). Found, %: C 74.55; H 5.91; N 8.41; S 9.63. C₂₀H₂₀N₂S. Calculated, %: C 74.96; H 6.29; N 8.74; S 10.00.

(1S*,4aR*,9aR*)-N-Isopropyl-1-thiocyanato-1,2,3,4,4a,9a-hexahydrocarbazole (IX). A mixture of 0.22 g (1 mmol) of compound I, 0.84 g (10 mmol) of NaHCO₃, 0.51 g (2 mmol) of I_2 , and 0.19 g (2 mmol) of KSCN in 20 ml of acetonitrile was shaken for 24-130 h at 20°C, the progress of the reaction being monitored by TLC using benzene as eluent. When the reaction was complete, 50 ml of methylene chloride was added, the mixture was filtered, and the precipitate was washed with methylene chloride (10 ml). The organic phase was treated with a 5% aqueous solution of Na₂S₂O₃ (3×10 ml) and water (20 ml) and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on silica gel (0.5×30 cm) using benzene as eluent. Yield 0.2 g (75%). ¹H NMR spectrum, δ, ppm: 1.2 d and 1.4 d (3H each, $2CH_3$, J = 7.0 Hz), 1.3–2.2 m (6H, 3CH₂), 3.0 d.d.d (1H, 4a-H, $J_1 = 4.0$, $J_2 = 8.1, J_3 = 11.5$ Hz), 3.5 t (1H, 9a-H, J = 8.0 Hz), 3.6 m (1H, 1-H), 3.7 q (1H, CH, J = 7.0 Hz), 6.8– 7.2 m (4H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 20.6, 20.9 (2CH₃); 21.2 (C^3); 24.5 (C^4); 30.1 (C^2); 42.3 (C^{4a}); 51.0 (C¹); 51.8 (CH); 65.2 (C^{9a}); 110.7 (SCN); 112.7, 127.1, 128.3, 133.2, 136.0, 152.3 (Carom). Found, %: C 70.31; H 7.03; N 9.98; S 11.36. C₁₆H₂₀N₂S. Calculated, %: C 70.54; H 7.40; N 10.28; S 11.77.

1-Methylamino-1,2,3,4,4a,9a-hexahydrocarbazole hydroiodide (X). A 20% solution of methylamine in THF, 1 ml (7 mmol), was added to a solution of 0.2 g (0.6 mmol) of carbazole **IV** in 5 ml of acetonitrile. When the reaction was complete, the solution was evaporated, and 10 ml of water and 10 ml of chloroform were added. The organic phase was separated and dried over MgSO₄, and the solvent was removed to obtain 0.2 g (98%) of compound **X**. R_f 0.2 (C₆H₆). IR spectrum, v, cm⁻¹: 3370 (NH). ¹H NMR spectrum, δ , ppm: 1.4–2.0 m (6H, 3CH₂), 2.5 s (3H, NCH₃), 3.3 d.d.d (1H, 1-H, $J_{1,2-ax} = 3.0$, $J_{1,2-eq} =$ 3.2 Hz), 3.6 d.d.d (1H, 4a-H, $J_{4a,4-ax} = 9.0$, $J_{4a,4-eq} =$ 7.1 Hz), 3.8 d.d [1H, 9a-H, $J_{9a,1} = 3.5$, $J_{9a,4a-eq} = 7.2$ Hz), 4.3 d and 4.5 d (1H each, PhCH₂, J = 16.3 Hz), 6.6 d (1H, 8-H, J = 7.6 Hz), 6.8 t (1H, 6-H, J = 7.3 Hz), 7.0 m (1H, 7-H), 7.0–7.4 m (8H, H_{arom}, NH₂I). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 19.0 (C³); 24.0 (C⁴); 29.0 (C²); 31.3 (NCH₃); 38.6 (C^{4a}); 53.9 (CH₂); 56.4 (C¹); 65.0 (C^{9a}); 110.4 (C⁸); 119.9 (C⁷); 123.0 (C⁵); 127.6 (C⁶); 134.7 (C^{4b}); 151.1 (C^{8a}); 127.2, 128.4, 128.6, 138.7 (C_{arom}). Found, %: C 56.84; H 5.65; I 29.78; N 6.32. C₂₀H₂₅IN₂. Calculated, %: C 57.14; H 6.01; I 30.19; N 6.66.

3-Allylamino-5-methyl-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole (XIII). Allylamine, 0.14 g (2.4 mmol), was added with stirring to a solution of 0.6 g (2 mmol) of compound XI in 10 ml of acetonitrile. The mixture was left to stand for 12 h and evaporated, 10 ml of 10% aqueous sodium hydroxide and 10 ml of methylene chloride were added, and the mixture was shaken. The organic phase was separated and dried over MgSO₄, the solvent was removed, and the residue was subjected to chromatography on silica gel using benzene-ethyl acetate (9:1) as eluent. Yield 0.4 g (70%). $R_{\rm f}$ 0.3. IR spectrum, v, cm⁻¹: 3328 (NH). ¹H NMR spectrum, δ , ppm: 1.4–2.4 m (4H, 2CH₂), 2.1 s (3H, CH₃), 3.0 d.t (1H, 3-H, $J_1 = 3.2$, $J_2 =$ 5.3 Hz), 3.3 m (2H, CH₂), 3.9 d.t (1H, 8b-H, $J_1 = 3.2$, $J_2 = 9.0$ Hz), 3.5–4.3 br.s (2H, 2NH), 4.0 d.d (1H, 3a-H, $J_1 = 3.2$, $J_2 = 9.0$ Hz), 5.1 d.d (1H, 1'-H_A, $J_1 =$ 1.4, $J_2 = 10.2$ Hz), 5.2 d.q (1H, 1'-H_B, $J_1 = 1.4$, $J_2 =$ 17.1 Hz), 6.0 d.d.t (1H, 2-H, $J_1 = 4.0$, $J_2 = 10.2$, $J_3 =$ 17.1 Hz), 6.7 t (1H, 7-H, J = 7.0 Hz), 6.9 d (1H, 6-H, J = 7.0 Hz), 7.0 d (1H, 8-H, J = 7.0 Hz). ¹³C NMR spectrum, δ_{C} , ppm: 30.9 (C²), 32.0 (C¹), 46.4 (C^{8b}), 50.8 (C^{3'}), 67.8 (C³), 69.2 (C^{3a}), 116.1 (C^{1'}), 118.3 (C⁵), 118.8 (C⁷), 121.8 (C⁸), 128.3 (C^{8a}), 132.4 (C⁶), 136.8 (C^{3'}), 149.0 (C^{4a}). Found, %: C 78.54; H 8.66; N 11.94. C₁₅H₂₀N₂. Calculated, %: C 78.90; H 8.83; N 12.27.

N-Allyl-3-bromo-5-methyl-1,2,3,3a,4,8b-hexahydrocyclopenta[*b*]indole (XIV). Allyl bromide, 0.7 g (6 mmol), was added with stirring to a mixture of 0.9 g (3 mmol) of 3-iodoindole XI and 1.1 g (10 mmol) of NaHCO₃ in 20 ml of acetonitrile, and the mixture was kept for 24 h. When the reaction was complete (TLC), the solvent was distilled off under reduced pressure, and 10 ml of water and 20 ml of chloroform were added to the residue. The organic phase was separated and dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was subjected to chromatography on silica gel using benzene as eluent. Yield 0.4 g (39%). R_f 0.8 (C₆H₆). ¹H NMR spectrum, δ , ppm: 1.61–2.5 m (4H, 2CH₂), 3.7 m (2H, CH₂), 3.9 t (1H, 8b-H, J = 8.7 Hz), 4.2 d (1H, 3a-H, J = 8.9 Hz), 4.3 m (1H, 3-H), 5.0– 5.2 m (2H, CH₂), 5.8 d.d.t (1H, CH, $J_1 = 5.8$, $J_2 = 10.2$, $J_3 = 17.2$ Hz), 6.6 t (1H, 7-H), 6.7 d and 6.8 d (1H each, 6-H, 8-H). ¹³C NMR spectrum, δ_C , ppm: 19.1 (CH₃), 33.1 (C¹), 33.9 (C²), 44.4 (C^{8b}), 54.5 (CH₂), 58.4 (C³), 79.2 (C^{3a}), 117.2 (CH₂=), 119.6 (C⁷), 122.2 (C⁸), 130.8 (CH=S), 134.3 (C⁵), 134.8 (C⁶), 149.1 (C^{4a}). Mass spectrum, m/z: 291 $[M]^+$, 212 $[M - Br]^+$ (base peak), 184 $[M - Br - C_2H_4]^+$, 170 $[M - Br - C_6H_6]^+$. Found, %: C 61.39; H 6.07; Br 26.89; N 4.43. C₁₅H₁₈BrN. Calculated, %: C 61.65; H 6.22; Br 27.34; N 4.79.

N-Allyl-3-amino-5-methyl-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole (XV). Gaseous ammonia was passed over a period of 10 min through a solution of 0.6 g (2 mmol) of indole XIV in 10 ml of acetonitrile under stirring at 0°C. The mixture was left to stand for 0.5 h and evaporated, 10 ml of 10% aqueous sodium hydroxide and 20 ml of methylene chloride were added, and the mixture was shaken and washed with 20 ml of water. The organic phase was separated and dried over MgSO₄, the solvent was removed, and the residue was subjected to chromatography on silica gel using benzene-ethyl acetate (9:1) as eluent. Yield 0.3 g (70%). $R_{\rm f}$ 0.3 (C₆H₆). IR spectrum, v, cm⁻¹: 3370 (NH). ¹H NMR spectrum, δ , ppm: 1.4–1.8 m (4H, 2CH₂), 2.3 s (3H, CH₃), 3.3 m (1H, 3-H), 3.6 d.d (1H, 3a-H, $J_1 = 2.5$, $J_2 = 9.3$ Hz), 3.8–3.9 m (5H, NCH₂, 8b-H, NH₂), 5.2 m (2H, =CH₂), 5.9 m (1H, CH=), 6.6– 6.9 m (3H, 6-H, 7-H, 8-H). ¹³C NMR spectrum, δ_C , ppm: 18.7 (CH₃), 31.5 (C²), 32.3 (C³), 44.0 (C^{8b}), 54.5 (NCH₂), 59.5 (C¹), 78.5 (C^{3a}), 116.2 (=CH₂), 119.3 (C⁸), 119.8 (C^{8a}), 121.7 (C^{6}), 130.1 (C^{7}), 135.3 (C^{5}), 135.6 (CH=), 149.5 (C^{4a}). Found, %: C 78.64; H 8.65; N 12.02. C₁₅H₂₀N₂. Calculated, %: C 78.90; H 8.83; N 12.27.

N-Allyl-3-allylamino-5-methyl-1,2,3,3a,4,8bhexahydrocyclopenta[b]indole (XVI). Allylamine, 0.14 g (2.4 mmol), was added with stirring to a solution of 0.6 g (2 mmol) of compound XIV in 10 ml of acetonitrile. The mixture was left to stand for 12 h and evaporated, 10 ml of 10% aqueous sodium hydroxide and 20 ml of methylene chloride were added, the mixture was shaken, and the organic phase was separated and dried over MgSO₄. The solvent was removed, and the residue was subjected to chromatography on silica gel using benzene-ethyl acetate (9:1) as eluent. Yield 0.3 g (60%). $R_{\rm f}$ 0.5 (C₆H₆). ¹H NMR spectrum, δ , ppm: 1.3-2.2 m (4H, 2CH₂), 2.2 s (3H, CH₃), 3.0 m (1H, 3-H), 3.2 m (2H, CH₂), 3.6 d.d (1H, 3a-H, $J_1 = 2.0$, $J_2 = 9.0$ Hz), 3.7 m (2H, CH₂), 3.8 m (1H, 8b-H), 5.2 m (5H, 2CH₂=, NH), 5.9 m (2H, 2CH=), 6.6 t (1H, 7-H), 6.8 d and 6.9 d (1H each, 6-H, 8-H). ¹³C NMR

spectrum, $\delta_{\rm C}$, ppm: 18.4 (CH₃), 29.7 (C²), 31.7 (C¹), 44.1 (C^{8b}), 50.0 (NCH₂), 53.9 (NHCH₂), 65.3 (C³), 75.2 (C^{3a}), 115.2 (CH₂=), 116.0 (CH₂=), 119.0 (C⁸), 119.4 (C^{8a}), 121.3 (C⁷), 129.7 (C⁶), 135.0 (CH=), 135.1 (CH=), 136.3 (C⁵), 149.2 (C^{4a}). Found, %: C 80.50; H 8.97; N 10.40. C₁₈H₂₄H₂. Calculated, %: C 80.50; H 9.01; N 10.44.

3-Allyl-5-iodo-7-methyl-2,2a,3,4,5,6,10b,10coctahydro-1H-3,6a-diazabenzo[a]cyclopenta[cd]azulene (XVIII). Sodium hydrogen carbonate, 10 mmol, and iodine, 2 mmol, were added to a solution of 1 mmol of compound **XVI** in 20 ml of methylene chloride. When the initial amine disappeared, the mixture was treated with a 10% aqueous solution of $Na_2S_2O_3$ (2×20 ml), and the organic phase was separated, washed with water $(2 \times 10 \text{ ml})$, and dried over MgSO₄. The solvent was removed under reduced pressure to obtain assumingly compound **XVII** which was gradually converted into XVIII. Yield 0.4 g (90%). $R_{\rm f}$ 0.8 (C₆H₆). ¹H NMR spectrum, δ , ppm: 1.7– 2.6 m (4H, 2CH₂), 2.2 s (3H, CH₃), 3.6 m (1H, 2a-H), 3.8 m (2H, 6-H), 4.0 m (2H, 1'-H), 4.2 m (1H, 10b-H), 4.35 m (1H, 10c-H), 5.1–5.3 m (2H, 4-H), 5.6 m (1H, 5-H), 5.8 m (2H, 3'-H), 6.3 m (1H, 2'-H), 6.7-6.9 m (3H, H_{arom}). ¹³C NMR spectrum, δ_{C} , ppm: 13.8 (C⁵), 18.4 (CH₃), 26.8 (C¹), 31.4 (C²), 44.9 (C^{10b}), 48.1 (C⁶), 54.2 (C^{1'}), 60.0 (C⁴), 64.7 (C^{2a}), 71.7 (C^{10s}), 117.7 (C³), 120.7 (C¹⁰), 121.1 (C^{10a}), 124.3 (C⁷), 127.0 (C⁹), 130.2 (C^8) , 134.0 (C^2) , 148.6 (C^{6b}) . Found, %: C 54.75; H 5.80; I 32.15; N 7.05. C₁₈H₂₃IN₂. Calculated, %: C 54.83; H 5.88; I 32.18; N 7.10.

REFERENCES

- Gataullin, R.R., Nasyrov, M.F., Abdrakhmanov, I.B., and Tolstikov, G.A., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 1525.
- Smith, A.V., Kingery-Wood, J., Leenay, T.L., Nolen, E.G., and Sunazuka, T., *J. Am. Chem. Soc.* 1992, vol. 114, p. 1438.
- Andreeva, N.I., Bogdanova, G.A., Bokanov, A.I., Ivanov, P.Yu., Mashkovitskii, M.D., and Shvedov, V.I., *Khim. Farm. Zh.*, 1992, p. 4.
- FRG Patent no. 374098, 1924; Chem. Abstr., 1924, vol. 18, p. 2175.
- 5. Gataullin, P.P., Kazhanova, T.V., Minnigulov, F.F., Fatykhov, A.A., Spirikhin, L.V., and Abdrakhmanov, I.B., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2000, p. 1789.
- Gataullin, R.R., Minnigulov, F.F., Fatykhov, A.A., Spirikhin, L.V., and Abdrakhmanov, I.B., *Russ. J. Org. Chem.*, 2001, vol. 37, p. 1289.
- Pretsch, E., Clerk, T., Seible, J., and Simon, W., Tables of Spectral Data for Structure Determination of Organic Compounds, Berlin: Springer, 1983.